GitOps with Azure Kubernetes
using ArgoCD

Problem Statement

Kubernetes is the Industry standard today to run application workloads with its orchestration
capabilities like self healing, auto scaling etc.

Azure Kubernetes Service (AKS) is a managed Kubernetes service that allows users to
deploy and manage containerized applications on Azure.

For every application running on Kubernetes platform, there are couple of components. One is
application source code and other one is related to cluster management.

Continuous Integration part covers the application and Continuous Delivery part covers the
Cluster management.

As part of Continuous Integration, when application source code commits in GitHub,
automated Cl pipeline pulls the code, builds, run test cases, generate Docker file and upload to
Container registry. In addition, it updates the Kubernetes configuration file (deployment.yaml)
with the latest Docker image version.

Continuous Delivery pipeline, deploys the updated Configuration files (deployment.yaml,
service.yaml and others like configmap, secrets, namespace etc else helm charts) on Kubernetes
Cluster. This is more of push based approach where the configuration files are applied on
target Cluster with kubectl apply command.

Opportunity for improvement in this approach (non GitOps way of CICD) as follows:

® FEven when there is no change in application code like updating replicas in
deployment.yaml scenario as well, we have to execute both Cl and CD jobs.

® Cluster credentials to be stored in a vault for CICD process to leverage and push
changes. This is a security risk situation

® |n Kubernetes deployments, we can’t check for the successful completion of
deployment. Only we can execute the Kubectl apply command as part of deployment. We
may need to execute test scripts to validate the completion of deployment

These areas of improvement items are handled in GitOps way of working enabled by tools like
Argo CD, Flux. In this blog, we will be covering the Argo CD way of implementation of GitOps in
Azure Kubernetes.

Azure Kubernetes come with “GitOps” feature leveraging Flux as its feature. Hence, I'm more

Intrested in covering the “Argo CD” way of implementation. Audience of this blog may review
"Flux” GitOps implementation provided by Azure Kubernetes which is much simpler.

Page 1 of 15

A key information to note - Argo CD is not a replacement for CD tools like Jenkins, Azure
DevOps release pipelines etc. Its an enabler for GitOps specifically for Kubernetes platform.
Argo CD is a CD tool. Cl process may continue to get executed in AS-IS way. Argo CD to apply
the changes from manifest files. Hence, its a CD tool.

Solution/ Architecture

What is GitOps ?

GitOps is a way of implementing continuous deployment for cloud native applications, using git
as a single source of truth for declarative infrastructure and applications. In a GitOps workflow,
the desired state of an application and its infrastructure is stored in a git repository, and any
changes to this desired state are made by committing changes to the git repository. An
automated system, such as a Kubernetes operator or a continuous deployment tool, is then used
to monitor the git repository and apply any changes to the actual state of the application and
infrastructure.

GitOps benefits -

e Ability to track changes to the application and infrastructure, roll back changes easily, and
collaborate with other team members using standard Git workflows.

e Allows for separation of concerns between development and operations teams, as the
application and infrastructure configuration can be managed independently.

To implement GitOps in Azure Kubernetes, you will need to follow these steps:

1. Create a Kubernetes cluster on Azure using AKS.

2. Install and configure Argo CD on your AKS cluster.

3. Connect Argo CD to your Git repository, where you will store your declarative
infrastructure and application configuration.

4. Define your application and infrastructure using Kubernetes manifest files and
commit them to your Git repository.

5. Argo CD will automatically sync the desired state of your application and

infrastructure with the actual state in your AKS cluster.

Argo CD is a pull based tool which picks the changes form GitHub rather pushing the code
with kubectl commands

Technical Details and Implementation of solution

In order to implement GitOps with Argo CD in Azure Kuberentes, follow the below steps

Page 2 of 15

B gitubcomRANMAVEDN K- syocd-deployment
Palsmpank. Wasn Culryuins Monsdjdew
kS w-u rgocd-dagplayrment
Pulve s
Bibih Ml

. RO TIA Upch e sppdcadonwrd

md ke
Srpunlpand

vam e

e Eace # nde wrad In this secaitary arderrnsd sourpezaby addie g o FLeD VL

1. Setup GitHub

Create deployment.yaml, service.yaml, application.yaml files as noted below in
GitHub repo

8 oRbub.cOMRANAVEDA KBS - argocd desloyment/Hob/maln/ceioymant yamy

deployment.yaml - Configuration file contain the container information like Docker
image, replicas, resource limit etc. This defines the container information for Kuberenetes
to orchestrate

Page 3 of 15

Make a note in the below image, we have “2” replicas. Hence, when we deploy, we
expect 2 PODS of NGINX to get deployed

service.yaml - Configuration file to expose the pod/container via Load Balancer service
so that it can be accessed from Browser

“ & PP CIMTFAUNEDARR wEoed coplaymont/Bion s v car ico iy o N

Bl s hasan Pradasparsn Mdvsrpurn Pudove

application.yaml - Configuration file specifically for Argo CD implementation which is a
bridge to integrate Argo CD with Git by configuring the path of GitHub repo, path of
config files, etc.

.« o 8 It comy/RALUANVIDA RS £- Qe cuponrar Loy araepic stion yarnl

In this case, we have used “nginx” docker image for deployment.

Page 4 of 15

In full blown production size applications, we may need to have couple of repositories.
One for hosting the application source code and other repository for hosting the
configuration files for Cluster management.In this demonstration, we focus on Cluster
management (Continuous Delivery part) with Argo CD in AKS

2. Create Azure Kubernetes Cluster

In order to create a Azure Kubernetes Cluster, we may need to have a subscription and
resource group available as pre-requisite.

You may search for “Kubernetes” in the search of services and click create Kuberentes Cluster as
noted below:

- B P e e e e S s e e o s e T ey e Cow bk S e Y Srsme T b i s - 8 4 0 CH

[—y— " 1w W o

Ko 03 services

e [P 4 —— I e s

PO DRI 000 C4E 70 Bip by

Upon click of “Create Kubernetes Cluster”, below form will open.
In the below image, you may absorb, we are creating the resource group as part of Cluster
creation process. Also, you may need to provide the name for Cluster as well.

Post filling the form (across all tabs), you may click “Review and create”

Page 5 of 15

4-90_'»«

MOw Lo e

b - AR -
Crealy Kubvinwoo Ve

Bars Mol A Riweben s Seodd Tne Reee e

Ny v . Ny vy
Ao e B Sl A e i i § e pen iy 48 et ey w———— o

R R e

Proew e
Y A, MY W TR W TR PR S 8 A B e
P—
R ™ |t ot bt i e ¥
tnsowes 3 % 4
-
Owin dratn
T -
-y > >
bt e |1
Ngent O =T
At e O | Bt
I ey ve i ey 2w ot g s
St - Y IIIAI'~ -
) ——— B e
Mew o m———
o mis

bt e . T
=) O i e e & -
D s e o b s v —

06 09 @

T e et

Validation pass, you may click “create” button to create the cluster as noted below:

T I ——— T # % %

Mot A [Sat o o s s et HwY v eew
A e el s
Comae Kuzwrmtes dunte
B N et
e —-—e Amavet e e e
——
o — L R R
e el -y
[P Temb
B L el e g
R e ne
Lomar poee o
vy reh
- '
e e - r—
S
A @ — I s "
-~ S~
~ .
———ar v Cwewibe
———
. —— e
W o e e
Ve e
| e] S | s o | omomen e e s

AKS Cluster as noted below will be created. You may next connect to the cluster.

Page 6 of 15

Post

- C @ il s e G B0 A ey Cm Rl e e'vdmuikt AW 2T A CLI RN SUEE | ST SR L e » 1 L]O Iy e
w ! by s
. e Connedt to ature b ogotho dustee
2 waredd g el
- i ve .l - -
- & e W - v
e e v
- v ewalive o 4
. - — .
et et
- - - .
N T——— - -
- PN - B Sty
i - ey - -
. -
o — Gares Gamu ~ —
- . —

e

A aplee wenlly

As noted in below

o0 1001 Ot ATW3 12T

image, you may connect to the cluster by clicking, “connect” button.

Commands will be shown on the right side. You may use the “Cloud Shell” to execute the
commands as noted below to connect to cluster and check the “default” deployments.

« (8 portd. arue con/FPnmaindignal. comicros ot coryresournte

[Evre- blcgethar-duster | Namespaces

wbsCiptions

356351C31-9605-42:9 DMV 12237 2412030/ res0urcegrol

f

In the below image, we can observe the default namespaces created by Azure Kubernetes when

Cluster get created.

Page 7 of 15

3. Install Argo CD in Azure Kuberenetes Cluster

1. Create a namespace in AKS cluster using the below noted command:

kubectl create namespace argocd

“« L] N FOYINLAP 9 corn B AR T AAMIE IR SaeVes Lo o B et BN LD T A TS RN A5 S- B T 2 22 T A TRO e Lo e

iAoy

2 aure-blagarian.cluses

F cove 0 - -
& [y
-
- . P — —
- S ’
<
"
P ‘
v
[Ap——
o st o Mondrag cdire, ¥ rvreshizee [Uréds
-
L B e i 2 ey
- —
e
"
L oy - -
™
Serrgr
-~
N CGolomin
e Y 5

Vg 16 bbert) ot rascapens arpred

o ol

This namespace will hold all Argo CD related objects

2. Install Argo CD in AKS cluster using the below noted command:

kubectl apply -n argocd -f https://raw.githubusercontent.com/argoproj/argo-cd/stable/
manifests/install.yaml

rmakrishaas ~fiBs-aqinn-config |5 dect) credte naespate Arpocd
Iem————— e gl e e i
rmake lshaas -1 | confl f 8 S/ re gltboasercontme .o/ argopro Y argo-od/slablessani fests finstall .yl
cortomrsscursedef | g .. . s tad
Cw Lonresourdede ! ¥ o ' Arpopro). Lo created
cortomrascur>edet | inxtaraions. 4 opral. Lo created
LOA L LOO=00nt
icaticraet-coztro.ler created

Lirarin
sathariatios. r Licatiorset
«authoriatice.kis. =
-~ fiatios. kb

Jhac.authoritatios . kis do/argocd-sarve: crested

https://raw.githubusercontent.com/argoproj/argo-cd/stable/manifests/install.yaml
https://raw.githubusercontent.com/argoproj/argo-cd/stable/manifests/install.yaml

3. Change the argocd-server service type to LoadBalancer:
kubectl patch svc argocd-server -n argocd -p '{"spec": {"type": "LoadBalancer"}}'

4. Access Argo CD:
Now you will be able to see that the argocd-server service type has been changed to a
LoadBalancer type. This means that it now has a public Azure load balancer attached to it
with an external IP.

kubectl get svc -n argocd
Note: In production environments, use an ingress for the Argo CD API server that is
secured. Above noted approach for exposing the Argo CD service is more for test/dev/

demo exercises.

Click the “external IP address” to launch Argo CD on browser as noted in below image:

- ¢ 8 PO ASEY XV TR LOr I RO XV WISt DR I W R B ST RIS 50 ETA T TN IR I w s ey oL "3 . 2 > i U o Updae

e A . &« & > & g e

wcoreblogethanad st | Savenm o o o wse

5. Credentials to access Argo CD:
Default User name: admin
Password can be obtained by executing the below noted command:

kubectl -n argocd get secret argocd-initial-admin-secret -o jsonpath="{.data.password}" |
baseb4 -d; echo

Note: Warning message to launch Argo CD over browser may come. You may go-ahead
and click the link to access the URL of Load balancer IP

Page 9 of 15

6. Login to Argo CD as noted below:

C A Sctecws | MenG0 022248 BAcITL I b RN R 2 LID0SN, XN appicatiors g a e a0(wen

argo

Let s cet stuff degleyed!

Above noted image is the "Home" page of Argo CD. Since we are launching for the first time, no
applications are listed.

4. Establish connection between Argo CD and GitHub

- 1 A MM AR NAITER TAZ BN VA T % F e u2 0.’.-"'“' 1

o qoh EMNCETOME T I

No applications yet
Crease naw AP ICRLCN 10 ST I ansc ing reSoLrces in your dusser

In order to establish connection between Argo CD and GitHub, we may need
"application.yaml” to be applied in Cluster

Clone the Git repository and navigate the application.yaml as noted below and apply

application.yaml using:
Kubectl apply -f application.yaml

[v i & ? %™)

rmsahcishoun [~/ESe-nglex-conllg /Kie-argovt—dep_uypans)§ Ls
applicatian.¥arl dep.oyoant.van. cervice.yarl

raakciskoan | - /kBsenJirxeconfig/kise-argocc=dJeplaymant |5 Kabectl apply =f application.vam
applicatian.aryopral. lofeginx coeliqured

savokrigkson | -/ kBg-nyiew-cenfie/kis-aveocd-deoploymant

As expected, as we have defined 2 replicas in deployment.yaml, we have 2 PODS
running in Cluster post sync

v b U0 TS 203 A g g e 5w e

QD) O 0y €D Q0 CE0D &

5. Argo CD synchronise the changes in GitHub configurations

Now, we are updating the replicas to “5” in deployment.yaml in GitHub and committing the

change.

Page 11 of 15

& Qi coar /NP T DAV b-ag ocd- Sy Tart, od & ke cie o aymeecy . qand & [RV |

. Cowmi ch angec

3 e P a w00 v

Pegriny
Y Camya b

Srwmiwd

8 Viag

[JEPN

Page 12 of 15

Immediately in Argo CD, we can see the number of PODS refreshed as 5 as noted below

GitHub reference repository: https://github.com/RAMAVEDA/
k8s-argocd-deployment.git

Clean up:

As Best Practise, you may need to clean up the setup to avoid unexpected cost incurred. As
noted below, its always advisable to delete the “Resource Group” to ensure no unnoticed
services run

T & serwstwe con Wienhvedmmalcomitnnet coraeacaieibreotioes S5 10 0305 D b A AIsR et & A A & B oA S 0 Qv

s 4 ; y b ed s
- ar b Tem—y arvne o d— B WS ¢ F e

AaZ.re-blsgathanrg ~ ¢

.....

Way forward:

Till now, we have experienced how Argo CD implements/syncronize the changes in Azure
Kubernetes Cluster based on changes happen in GitHub repository. This is more focussed on
Continuous Delivery.

Page 13 of 15

As an extension of this demo, we can include the application code for Continuous Integration in
a separate repository and build a CICD pipeline with GitHub actions

Create a new GitHub Actions workflow for your repository. The workflow should include the
following steps:

Continuous Integration to include -

. Checkout the code from your repository.
] Build and test your application.
. Push the updated application image to a container registry, such as Docker Hub

or Azure Container Registry.
. Update the Kubernetes manifest files in your repository with the new image tag,
and commit the changes to the repository.

Continuous Delivery to include the below step -

. Argo CD will automatically detect the changes and deploy the updated
application to your AKS cluster.

In addition, Azure Kuberentes Cluster and Argo CD installation can be automated with Terraform
for Cluster creation source code in Git as well

Challenges in implementing the solution

Creating the synchronisation between Argo CD and GitHub as the application.yaml specification
have to be accurate for establishing the sync

Business Benefit

Below noted Business Benefits are key outcomes of GitOps way of implementation.However its
not just limited to below benefits.

Faster Time to Market: With GitOps way of deployment automation, we have integrated

feedback control loop which speeds up mean time to deployment. This increases the Time to
Market which is essential to gain Market share

Page 14 of 15

Higher Developers Utilization: Limited experience is suffice for developers with Kuberentes as
Git way of management eases out the Cluster management and application deployment as Git
and Argo CD controls both application and Cluster management. Developers can focus on
application development rather diluting the effort on Kubernetes

Improved stability, consistency: As Cluster management is automated, stability naturally
improves. Also as both application and cluster configurations are managed in Git as single
source of truth, consistency and standardisation of applications improve significantly.

Higher reliability: Ability to rollback and fork, enable teams gain stable and reproducible

rollbacks which improved the mean time to recovery (reduced from hours to minutes)

Higher Security for Organizations:As the credentials of Cluster is no longer managed outside
of Cluster, security of Cluster improves which enables true “DevSecOps” way of
implementations with GitOps for Kuberenetes platforms

Page 15of 15

